ingin berpartisipasi memajukan pendidikan dengan membantu Bapak/Ibu Guru membuat administrasi dan menyajikan data valid.

Sinau Bareng Pak Alfan
  • Buku Kerjaku

    Segera hubungi kami, melalui contact us untuk lebih lanjut

  • Buku Kerjaku

    Segera hubungi kami, melalui contact us untuk lebih lanjut

  • Buku Kerjaku

    Segera hubungi kami, melalui contact us untuk lebih lanjut

  • Pemilu 2024

    https://Pendaftaran PPK dan PPS Pemilu Tahun 2024, Berikut Syarat Ketentuan dan Cara Daftarnya. https://www.kabarrakyat.id/kabar-news/pr-025714278/pendaftaran-ppk-dan-pps-pemilu-tahun-2024-berikut-syarat-ketentuan-dan-cara-daftarnya?page=2/

  • Pemilu 2024

    Ini Cara Mendaftar PPK, PPS, dan KPPS 2022 Pemilu 2024, Melalui Akses Link siakba.kpu.go.id. https://lubuklinggau.pikiran-rakyat.com/politik/pr-2915784931/ini-cara-mendaftar-ppk-pps-dan-kpps-2022-pemilu-2024-melalui-akses-link-siakbakpugoid

Tampilkan postingan dengan label K11. Tampilkan semua postingan
Tampilkan postingan dengan label K11. Tampilkan semua postingan

Persamaan Kuadrat

 Persamaan Kuadrat: Pengertian, Rumus, & Materi

Materi yang akan kita bahas hari ini yaitu mengenai persamaan kuadrat. Langsung saja, simak materi persamaan kuadrat berikut.

Sebelumnya kalian pasti pernah belajar mengenai perkalian bentuk aljabar dan pemfaktorkan bentuk aljabar.

Apa yang kalian pelajari dalam perkalian bentuk aljabar dan pemfaktoran bentuk aljabar?

Salah satunya kalian mengenal adanya bentuk kuadrat. Untuk menambah pengetahuan kalian, akan dibahas mengenai persamaan kuadrat pada bagian berikut.

Pengertian Persamaan Kuadrat

Apakah kalian mengetahui tentang persamaan kuadrat?

Persamaan kuadrat secara sederhana dapat dipahami sebagai bentuk polinomial dengan pangkat tertinggi 2.

Bentuk umum persamaan kuadrat yaitu ax2 + bx + c = 0 dengan a ≠ 0.

Dari bentuk persamaan umum di atas, jika digambarkan dalam bentuk grafik maka grafik akan berbentuk parabola.

Bentuk grafik persamaan kuadrat tersebut berdasarkan pada nilai koefisien dan konstanta persamaan kuadratnya.

Koefisien a menentukan tingkat kecekungan parabola.

Nilai a > 0 menunjukkan grafik parabola yang terbuka ke atas, sedangkan nilai a < 0 menunjukkan grafik parabola yang terbuka ke bawah.

Koefisien b menetukan posisi titik puncak terhadap absis (sumbu-x) pada grafik dan sumbu simetrinya.

Konstanta c menentukan titik potong grafik dengan sumbu-x dan sumbu-y.

Perhatikan contoh penerapan konsep persamaan kuadrat berikut.

Persamaan Kuadrat dalam Kehidupan Nyata

Beberapa permasalahan yang terjadi dalam kehidupan sehari-hari dapat diselesaikan dengan menerapkan konsep persamaan kuadrat ini.

Salah satu contohnya yaitu permasalahan di bawah ini.

Tiko dan Riko bersama-sama menyelesaikan suatu pekerjaan dalam waktu 18 menit. Jika Tiko bekerja sendiri, maka Tiko membutuhkan waktu 15 menit lebih lama daripada waktu yang dibutuhkan Riko. Berapa masing-masing waktu yang dibutuhkan Tiko dan Riko untuk menyelesaikan pekerjaan tersebut?

Nah, permasalahan tersebut dapat diselesaikan dengan menerapkan konsep persamaan kuadrat ini.

Agar kalian dapat menyelesaikan permasalahan yang berkaitan dengan persamaan kuadrat, coba pahami terlebih dahulu materi persamaan kuadrat berikut.

Persamaan dan Fungsi Kuadrat

Apa perbedaan persamaan kuadrat dan fungsi kuadrat?

Seperti yang telah disampaikan pada bagian sebelumnya, bentuk umum persamaan kuadrat yaitu ax2 + bx + c = 0 dengan a ≠ 0.

Sedangkan bentuk umum dari fungsi kuadrat adalah f(x) = ax2 + bx + c = 0 dengan a ≠ 0.

Fungsi kuadrat lebih menjelaskan pada input-output. Ketika kita menentukan suatu nilai untuk variabel (misal: x), maka fungsi kuadrat menghasilkan output berupa nilai tertentu.

Penjelasan mengenai beberapa rumus persamaan kuadrat akan disampaikan pada bagian di bawah ini.

Rumus Persamaan Kuadrat

Pada bagian berikutnya akan dibahas mengenai akar-akar persamaan kuadrat.

Sebelum membahas mengenai akar-akar persamaan kuadrat, terlebih dahulu akan dijelaskan rumus menentukan titik puncak parabola.

Bentuk umum persamaan kuadrat: ax2 + bx + c = 0 dengan a ≠ 0.

Titik puncak parabola terhadap absis (sumbu-x) dapat ditentukan dengan

x= – b / 2a

Titik puncak parabola terhadap ordinat (sumbu-y) dapat ditentukan dengan mensubstitusi nilai x dari xp pada persamaan kuadrat yp = f (x) = ax2 + bx + c = 0.

Atau dapat juga ditentukan dengan y= – D / 4a, dengan D merupakan diskriminan (D = b– 4ac).

Sehingga

Rumus Persamaan Kuadrat

Akar-Akar Persamaan Kuadrat

Sebelum mempelajari akar-akar persamaan kuadrat, akan dijelaskan mengenai sifat-sifat diskriminan berdasarkan nilainya. Bentuk umum persamaan kuadrat: ax2 + bx + c = 0 dengan a ≠ 0. Diskriminan dapat ditentukan dengan D = b– 4ac.

  • Jika nilai D > 0, maka persamaan kuadrat mempunyai dua akar nyata (real).
  • Jika nilai D = 0, maka persamaan kuadrat mempunyai dua akar sama (kembar).
  • Jika nilai D < 0, maka persamaan kuadrat tidak mempunyai akar nyata (mempunyai akar imajiner).

Terdapat 3 metode untuk menentukan akar-akar persamaan kuadrat:

  • Metode pemfaktoran
  • Metode melengkapkan kuadrat sempurna
  • Metode rumus ABC

Metode Pemfaktoran

Bentuk umum persamaan kuadrat yaitu ax2 + bx + c = 0 dengan a ≠ 0.

Penentuan akar-akar persamaan kuadrat dengan metode pemfaktoran, hasil akhir pemfaktoran berbentuk a(x – x1)(x – x2) = 0.

Pada bentuk tersebut, x1 dan x2 merupakan akar-akar persamaan kuadrat. Biar lebih jelas, yuk nonton videonya berikut.

Metode Melengkapkan Kuadrat Sempurna

Penyelesaian akar-akar persamaan kuadrat berbentuk ax2 + bx + c dengan melengkapkan kuadrat sempurna dapat dilakukan dengan mengubahnya menjadi bentuk (x + p)2 = q.

Setelah itu, dapat diselesaikan dengan (x + p) = √q dan -(x + p) = √q.

Metode Rumus ABC

Rumus ABC dituliskan sebagai berikut.

Bentuk umum persamaan kuadrat: ax2 + bx + c = 0 dengan a ≠ 0.

Rumus ABC

Untuk mengetahui sejauh mana pemahaman kalian mengenai persamaan kudrat, coba kerjakan latihan soal berikut. Baca juga Diagram.

Contoh Soal Persamaan Kuadrat

1. Persamaan kuadrat x– 3x + 4 = 0 memiliki titik puncak pada koordinat … .

Pembahasan
Contoh Soal Rumus Persamaan Kuadrat

2. Terdapat persamaan kuadrat 2x2 – 2x – 12 = 0. Tentukan akar-akar persamaan kuadrat tersebut menggunakan metode pemfaktoran, metode melengkapkan kuadrat dan menggunakan rumus ABC.

Pembahasan

Metode pemfaktoran

2x2 – 2x – 12 = 0

2(x2 – x – 6) = 0

2x2 – 2x – 12 = 0

2(x – 3)(x + 2) = 0

x – 3 = 0 atau x + 2 = 0

x = 3 atau x = -2

Akar-akar persamaan kuadrat: 3 dan -2

Metode melengkapkan kuadrat sempurna

Contoh Soal Rumus Persamaan Kuadrat 2

Menggunakan rumus ABC

Contoh Soal Rumus Persamaan Kuadrat Rumus ABC

Akar-akar persamaan kuadrat: 3 dan -2.


Distribusi Normal

 Distribusi Normal: Pengertian, Rumus, Contoh Soal

Pembahasan artikel kali ini mengenai distribusi normal.

Pernahkah kalian mengetahui distribusi normal?

Distribusi normal merupakan salah satu pembahasan dalam statistika yang berkaitan dengan distribusi peluang (distribusi probabilitas).

Tentu kalian sudah tahu kan mengenai distribusi dari suatu variabel diskret dan variabel kontinu.

Distribusi normal ini merupakan salah satu distribusi dari suatu variable yang kontinu.

Berikut ini akan dijelaskan terlebih dahulu mengenai distribusi normal.

Pengertian Distribusi Normal

Apa itu distribusi normal?

Distribusi normal merupakan salah satu jenis distribusi dengan variabel acak yang kontinu.

Pada distribusi normal terdapat kurva/grafik yang digambarkan menyerupai bentuk lonceng.

Distribusi normal dapat disebut juga sebagai distribusi Gauss. Persamaan yang terdapat dalam distribusi normal salah satunya yaitu terkait fungsi densitas.

Berikut merupakan fungsi densitas pada distribusi normal.

Rumus Distribusi Normal

Rumus Distribusi Normal

Keterangan:

  • Ï€ : konstanta dengan nilai 3,14159. . .
  • e  : bilangan eksponensial dengan nilai 2,7183 . . .
  • µ  : rata-rata (mean) dari data
  • σ  : simpangan baku data berdistribusi normal

Bagaimana cara untuk menghitung nilai z? Nilai z dapat dihitung dengan rumus berikut.

z = (x – µ)/σ

Keterangan:

  • µ  : rata-rata (mean) dari data
  • σ  : simpangan baku data berdistribusi normal

Pada bagian sebelumnya dijelaskan bahwa data yang berdistribusi normal memiliki kurva yang berbentuk menyerupai lonceng.

Bentuk kurva dari data berdistribusi normal yaitu sebagai berikut.

Kurva Distribusi Normal
Kurva distribusi normal

Berdasarkan kurva distribusi normal di atas, distribusi normal memiliki rata-rata (mean) sama dengan 0 dan simpangan baku sama dengan 1.

Berikut ini akan dijelaskan mengenai beberapa contoh penerapan distribusi normal.

Baca juga Mean, Median, Modus.

Penerapan Distribusi Normal

Distribusi normal sangat penting untuk dipelajari terutama dalam melakukan analisis data statistika.

Dengan data yang diambil secara acak dan berdistribusi normal akan memudahkan dalam melakukan analisis dan meramalkan serta mengambil kesimpulan untuk cakupan yang lebih luas.

Distribusi normal banyak diterapkan dalam berbagai perhitungan statistika dan pemodelan yang berguna dalam berbagai bidang.

Dalam menentukan distribusi probabilitas diperlukan tabel z dari distribusi normal.

Tabel Z Distribusi Normal

Berikut merupakan tabel nilai z pada data yang berdistribusi normal.

Tabel Distribusi Normal
Tabel Distribusi Normal 2
Tabel Z distribusi normal

Pada tabel di atas terdapat acuan pada baris dan kolomnya. Hal tersebut untuk memudahkan dalam menentukan nilai z.

Berikut langkah-langkah dalam menentukan nilai z.

  1. Perhatikan pada bagian kolom awal. Misalkan kita akan menentukan nilai untuk 1,56. Maka langkah pertama kita mencari pada baris 1,5.
  2. Perhatikan pada baris awal. Carilah nilai 0,06.
  3. Tentukan titik temu (sel) dari baris dan kolom yang dimaksud. Nilai z untuk 1,56 adalah 0,9406.

Berikut merupakan contoh soal terkait distribusi kelompok untuk meningkatkan pemahaman kalian.

Baca juga Aturan Sinus dan Cosinus.

Contoh Soal Distribusi Kelompok

Dalam suatu ujian terdapat 300 siswa yang mengikuti ujian tersebut. Rata-rata dari hasil ujian yaitu 70 serta simpangan baku hasil ujian tersebut adalah 10.

Jika data nilai hasil ujian siswa tersebut berdistribusi normal, maka berapa persen mahasiswa yang mendapat nilai A jika syarat untuk mendapatkan nilai A adalah nilai lebih dari 85.

Pembahasan

Berdasarkan contoh soal di atas, diperoleh informasi sebagai berikut.

µ  = 70

σ  = 10

x  = 85

akan ditentukan Z(X>85).

Z(X > 85) = 1 – Z(X < 85)

Akan dihitung terlebih dahulu nilai dari Z (X < 85)

Z = (85 – 70)/10 = 15/10 = 1,5

Nilai Z untuk 1,50 adalah 0,9332, sehingga

Z(X > 85) = 1 – Z(X < 85)

Z(X > 85) = 1 – 0,9332

Z(X > 85) = 0,0668

Z(X > 85) = 6,68%

Mari kita simpulkan materi mengenai distribusi normal.

Kesimpulan

Distribusi normal merupakan salah satu jenis distribusi dengan variabel acak yang kontinu. Pada distribusi normal terdapat kurva/grafik yang digambarkan menyerupai bentuk lonceng.

Untuk menentukan nilai z atau z-score  dapat digunakan rumus berikut.

z = (x – µ)/σ

Tabel nilai z pada distribusi normal digunakan untuk mempermudah dalam menentukan z-score.

Demikian pembahasan pada artikel dengan judul “Distribusi Normal”, semoga artikel ini dapat berguna bagi kalian dalam mempelajari materi statistika selanjutnya. Terima kasih. Baca juga Turunan.

Polinomial

Polinomial: Pengertian, Rumus, Contoh Soal

Pernahkah kalian mendengar kata polinomial? Polinomial biasa juga disebut dengan suku banyak.

Lalu apa itu suku banyak? Lebih jelasnya mari kita simak materi dibawah ini.

Pengertian Polinomial

Dalam dunia matematika, polinomial atau suku banyak adalah pernyataan matematis yang berhubungan dengan jumlahan perkalian pangkat dalam satu atau lebih variabel dengan koefisien.

Bentuk umum dari suatu polinomial adalah sebagai berikut

anxn+…+a2x2+a1x1+a0

dimana a merupakan koefisien konstan, dan pangkat tertinggi pada polinomial tersebut menandakan orde atau derajatnya, sehingga polinomial diatas memiliki derajat atau orde n.

Pembagian Polinomial

Pada umumnya, bentuk umum dari pembagian polinomial adalah

F(x) = P(x) × H(x) + S(x)

Dimana

  • F(x) : suku banyak
  • H(x) : hasil bagi
  • P(x) : pembagi
  • S(x) : sisa

Sebelum kita memahami metode pembagian polinomial, terlebih dahulu kita harus mengetahui tentang teorema sisa yaitu

Misalkan F(x) merupakan polinomial berderajat n,

Jika F(x) dibagi (x-k) maka hasilnya adalah F(k)

Jika F(x) dibagi (ax-b) maka hasilnya adalah F(b/a)

Jika F(x) dibagi (x-a)(x-b) maka hasilnya adalah

Rumus Polinomial

Kemudian untuk metode pembagian polinomial terdapat beberapa cara, diantaranya

1. Metode Pembagian Biasa

Contohnya adalah jika 2x3 – 3x2 + x + 5 dibagi dengan 2x2 – x – 1

Rumus Pembagian Biasa

maka hasil bagi dan sisanya adalah hasil bagi = x-1 dan sisa = x+4

2. Metode Horner

Metode ini dipakai untuk pembagi yang berderajat 1 ataupun pembagi berderajat n yang bisa difaktorkan jadi pembagi-pembagi dengan derajat 1.

Langkah langkah :

1) Tulis koefisien dari polinomialnya → harus urut dari koefisien xn, xn – 1, … hingga konstanta (untuk variabel yang tidak memiliki koefisien, maka ditulis 0). Misalkan untuk 5x3 – 8, koefisien-koefisiennya adalah 5, 0, 0, dan -8

2) Untuk koefisien dengan derajat tertinggi P(x) ≠ 1, hasil baginya harus dibagi dengan koefisien derajat tertinggi P(x)

3) Jika pembagi dapat difaktorkan menjadi

  • P1 dan P2, maka S(x) = P1 × S2 + S1
  • P1, P2, P3, maka S(x) = P1×P2×S3 + P1×S2 + S1
  • P1, P2, P3, P4, maka S(x) = P1×P2×P3×S4 + P1×P2×S3 + P1×S2 + S1
  • dan seterusnya

Untuk lebih jelasnya, mari simak contoh berikut ini

Misalkan diketahui

F(x) = 2x3 – 3x2 + x + 5

P(x) =  2x2 – x – 1

Tentukan hasil bagi dan sisanya

Jawab :

F(x) = 2x3 – 3x2 + x + 5

P(x) =  2x2 – x – 1 = (2x + 1)(x – 1)

Sehingga p1 : (2x + 1) = 0 -> x = -1/2 dan p2 : (x – 1) = 0 -> x = 1

Kemudian langkah hornernya ditunjukkan pada gambar berikut

Langkah Horner

Jadi, diperoleh hasil dan sisanya sebagai berikut

H(x) = x-1

S(x) = P1×S2 + S1 = x + 4

3. Metode Koefisien Tak Tentu

Pada dasarnya, metode ini dikerjakan dengan cara mensubstitusikan F(x) berderajat m dan P(x) berderajat n ke dalam bentuk umum pembagian polinomial, kemudian H(x) dan S(x) nya diisi dengan

H(x) merupakan polinomial berderajat k, dimana k = m – n

S(x) merupakan polinomial berderajat n-k

Lebih jelasnya akan dibahas pada contoh soal.

Baca juga Lingkaran.

Contoh Soal Polinomial

Misalkan diketahui

F(x) = 2x3 – 3x2 + x + 5

P(x) =  2x2 – x – 1

Tentukan hasil bagi dan sisanya menggunakan metode tak tentu

Pembahasan

m = 3, n = 2, k = 1

H(x) berderajat 1 misalkan H(x) = ax+b

S(x) berderajat 2-1=1 misalkan S(x) = px+q

Substitusikan F(x), P(x), H(x), S(x) ke persamaan

F(x) = P(x) . H(x) + S(x), maka diperoleh

2x3 – 3x2 + x + 5 = (2x2 – x – 1)(ax+b) + px+q

2x3 – 3x2 + x + 5 = 2ax+ 2bx– ax– bx – ax – b + px + q

(2)x3 + (– 3)x2 + (1)x + (5) = (2a)x+ (2b – a)x+ (– b – a + p) x + (– b + q)

Kemudian samakan koefisien dari ruas kiri dan kanan menjadi

2a = 2

a = 1

2b – a = -3

2b – 1 = -3

2b = -2

b = -1

– b – a + p = 1

1 – 1 + p = 1

p = 1

– b + q = 5

1 + q = 5

q = 4

Jadi,

H(x) = ax + b = x – 1

S(x) = px + q = x + 4

Nah, sekian penjelasan mengenai polinomial, semoga semakin membuat paham ya, terima kasih. Baca juga Distribusi Normal.

Materi Matematika SMA

 Materi Matematika SMA Kelas 10, 11, 12

Aritmetika

Aritmetika adalah cabang ilmu matematika yang mempelajari operasi-operasi dasar bilangan mulai dari penjumlahan, pengurangan, perkalian, dan pembagian, hingga penerapan hasilnya dalam kehidupan sehari-hari. Pelajari lebih lanjut tentang aritmetika melalui link di bawah ini

Geometri

Geometri adalah salah satu cabang ilmu matematika mendalami pada pengukuran, pernyataan terkait bentuk, posisi relatif sebuah gambar, pandang ruang, dan lain sebagainya.

Aljabar

Aljabar adalah cabang ilmu matematika yang mempelajari simbol matematika dan aturan-aturan yang dipakai untuk memanipulasi simbol tersebut.

Trigonometri

Trigonometri adalah salah satu cabang ilmu dalam matematika yang mempelajari mengenai ukuran sisi dan sudut pada segitiga.

Kalkulus

Kalkulus adalah cabang ilmu matematika yang membahas konsep limit, diferensial (turunan), serta integral (anti-turunan).

Statistika

Statistika adalah cabang ilmu yang mendalami metode perencanaan, pengumpulan data, analisa, interpretasi, hingga presentasi data.

Bilangan

Bilangan merupakan sebuah konsep dalam ilmu matematika yang dipakai dalam pengukuran dan pencacahan.

Logika dan Himpunan

Logika matematika adalah cabang ilmu matematika yang mengkaji logika matematis dan aplikasinya di pada bidang lain. Sedangkan Himpunan adalah kumpulan objek yang elemennya didefinisikan secara jelas. Dalam membahas logika, banyak pernyataan yang melibatkan tentang kumpulan objek (himpunan).

Materi Lainnya

Diberdayakan oleh Blogger.